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High-grade serous tubo-ovarian carcinoma (HGSC) is a major cause of
cancer-related death. Treatment is not uniform, with some patients
undergoing primary debulking surgery followed by chemotherapy
(PDS) and others being treated directly with chemotherapy and only
having surgery after three to four cycles (NACT). Which strategy is
optimal remains controversial. We developed a mathematical frame-
work that simulates hierarchical or stochastic models of tumor initi-
ation and reproduces the clinical course of HGSC. After estimating
parameter values, we infer that most patients harbor chemoresistant
HGSC cells at diagnosis and that, if the tumor burden is not too large
and complete debulking can be achieved, PDS is superior to NACT
due to better depletion of resistant cells. We further predict that
earlier diagnosis of primary HGSC, followed by complete debulking,
could improve survival, but its benefit in relapsed patients is likely to
be limited. These predictions are supported by primary clinical data
from multiple cohorts. Our results have clear implications for these
key issues in HGSC management.

ovarian cancer | computational model | neoadjuvant chemotherapy |
primary debunking surgery

Ovarian cancer is the eighth most common cancer and cancer
death in women worldwide (1). High-grade serous tubo-ovarian

cancer (HGSC) constitutes ∼70% of all ovarian malignancies and
has the worst prognosis (2). Current treatment of most patients
with HGSC consists of cytoreductive surgery and combination
chemotherapy with platinum-containing DNA–cross-linking drugs
and taxane-based microtubule-stabilizing agents (2). Although
treatment significantly improves survival, most women relapse
with chemotherapy-refractory disease and eventually succumb (3).
Multiple mechanisms of chemoresistance have been documented (4,
5), including reduced intracellular drug accumulation (6), detoxifi-
cation by increased levels of glutathione (7), altered DNA damage
repair (8, 9), dysfunctional apoptotic pathways (10, 11), and hyper-
activation of various cell signaling pathways (12–14). These mecha-
nistic studies are consistent with recent genomic analyses that reveal
marked clonal evolution of HGSC during therapy (15). Other evi-
dence, however, supports a hierarchical organization of HGSC,
featuring intrinsically chemoresistant “cancer stem cells” (CSCs) that
can escape initial treatment and seed recurrence (16–18).
Although there is uniform agreement that HGSC patients

should receive surgery and chemotherapy, the optimal order and
timing of these modalities remain controversial. Two main options
exist: primary debulking surgery with adjuvant chemotherapy (PDS),
or neoadjuvant chemotherapy, followed by interval debulking sur-
gery (NACT) (19–24). In either case, the surgical standard of care is
to seek maximal cytoreduction, with the objective being to leave no
visible residual disease. However, the precise definition of such

“optimal debulking” can vary among different centers, surgeons, and
reports (19, 21, 24, 25).
Several studies have found similar outcomes after PDS or

NACT, including two highly influential randomized trials (EORTC
and CHORUS) carried out across multiple countries (22, 23,
26–28). In both trials, however, the question of potential bias in
patient recruitment has been raised, favoring potentially those with
more extensive disease, who are less likely benefit from “upfront”
surgery (23, 28). Consistent with this interpretation, overall survival
in these trials was significantly shorter than that seen in other
HGSC cohorts (19, 24, 29, 30). Closer examination of these reports
reveals additional factors that might have influenced their con-
clusions. The EORTC study had inconsistencies in optimal
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debulking rates between participating centers, with the PDS-
associated complete debulking data highly influenced by the
results from a single institution (23). The CHORUS study in-
volved 76 clinical sites, and there were substantial differences in
surgery execution and chemotherapy drug selection/dosage be-
tween them (28).
At Princess Margaret Cancer Center, retrospective data showed

that PDS patients with no visible disease postresection survived
substantially longer (7-y survival, >60%) than those receiving
NACT (7-y survival, ∼10%). Furthermore, although residual tumor
postresection is a critical determinant of survival, its influence on
the PDS group was far more dramatic than on NACT group (24).
Of course, this report suffers from deficiencies common to all
retrospective analyses, including lack of randomization to account
for tumor burden at diagnosis and other factors; indeed, the NACT
group in this study did have more extensive disease.
Another controversy in HGSC management focuses on the

potential benefit of earlier diagnosis. Earlier diagnosis of primary
HGSC is generally assumed to enhance patient survival and quality
of life (3). Intuitively, one might predict that the same reasoning
would apply to recurrent disease; however, survival is similar in
relapsed patients treated earlier, based on increasing serum CA125
levels, than in those treated only when physical symptoms of re-
currence appear (31). Conceivably, the lead time between CA125
rise and clinical recurrence is too short for earlier chemotherapy to
be beneficial; if so, then patient survival might be extended by more
sensitive methods, such as testing for circulating tumor DNA
(ctDNA) (32, 33).
To address these issues, we developed a mathematical framework

that models the dynamics of HGSC progression, response to sur-
gery and chemotherapy, and recurrence. Our results, generated
over a wide range of parameters and accounting for hierarchical
and stochastic models of tumor initiation, argue that PDS is supe-
rior to NACT when complete debulking is feasible and suggest that,
with currently available therapies, the benefits of earlier detection
are intrinsically restricted to primary HGSC.

Results
Clinical Cohorts. To train and evaluate our model, we used two
independent cohorts, comprising a total of 285 International
Federation of Gynaecology and Obstetrics (FIGO) stage IIIC–IV
HGSC patients (Table 1 and SI Appendix, Fig. S1). The first
dataset contains information on 148 patients who were treated by
PDS or NACT at University Health Network (UHN) between
March 2003 and November 2011 (24). In this cohort, “complete
debulking” (no visible disease, operationally defined here as <1-
mm residual tumor) was achieved in 97 patients, whereas 51 pa-
tients had 1–10 mm of residual tumor. Among the 97 patients with
complete debulking, 40 received upfront surgery, followed by six
cycles of platinum and taxane-based chemotherapy (hereafter,

“PDS <1 mm”), whereas the other 57 patients were treated with
upfront chemotherapy, followed by interval surgery after the first
three to four cycles (hereafter, “NACT <1 mm”). For each pa-
tient, descriptions of tumor size postsurgery and serum CA125
levels over the course of treatment were recorded (Fig. 1A). As
reported previously (24), overall survival was much better for
patients in the PDS <1-mm group (Fig. 1B). However, patients in
the NACT <1-mm group tended to have greater tumor burden at
diagnosis (24), confounding direct comparison of the survival
curves. Data from these patients (termed “Training Set” below)
were used to train the parameters in our computational model.
The other 51 patients in the UHN dataset underwent debulking

but were left with residual tumor of 1–10 mm in diameter. Lack of
complete gross debulking usually was due to tumor location. As
reported previously (24), there was a significant negative associ-
ation between residual tumor size and patient survival in patients
who had undergone PDS (Fig. 1C), but no association was found
in the NACT group (Fig. 1D). Similar trends have been observed
in several other studies investigating the association between pa-
tient survival and residual tumor size (19, 20, 34). Independent of
the <1-mm cohort, we used this 1- to 10-mm cohort (“Validation
Set 1” below) in initial tests of the validity of our computational
model (SI Appendix, Fig. S1).
The second dataset, which is independent of the UHN cohort,

contains information on 137 patients diagnosed from October
2001 to June 2005 and enrolled in the CAN–Canadian Cancer
Trials Group (CCTG)–OV16 trial (hereafter, “CCTG cohort”).
These patients all received upfront surgery, followed by eight
cycles of carboplatin/paclitaxel chemotherapy. The median delay
for chemotherapy after surgery was 0.8 mo (compared with 1 mo
at UHN). In 20 patients, debulking to <1-mm residual tumor was
achieved, 36 patients had 1- to 10-mm residual tumor, and 81
patients had residual tumor diameter >10 mm. Data from the
CCTG cohort were used to further evaluate the validity of our
computational model (SI Appendix, Fig. S1).

Model Overview. We developed a mathematical model of cancer
initiation and evolution to investigate the dynamics of HGSC
growth, the onset of chemoresistance, and the effects of various
treatment strategies on patient survival (Fig. 1E and detailed in SI
Appendix,Methods). Our initial framework was based on work by the
Michor laboratory (35, 36) and considers exponential expansion of
HGSC cells starting from a single cancer cell that has all of the
genetic alterations needed for proliferation and metastasis but has
not developed chemoresistance. This framework assumes that during
tumor development/progression, any chemosensitive HGSC cell can
acquire mutations and/or epigenetic alterations that enable chemo-
resistance; i.e., it assumes a stochastic model of tumor initiation.
However, the model can be modified to accommodate a hierarchical
organization of HGSC, in which a relatively chemoresistant CSC
gives rise to chemosensitive progeny. Importantly, the predictions/
implications of the hierarchical and stochastic models are essentially
the same (seeMaterials andMethods and SI Appendix for more details).

Estimation of Parameter Values. For most model parameters, a
clinically relevant range of values could be deduced from clinical
data or previous publications (see Materials and Methods for de-
tailed description of parameter value estimations). We then varied
u (the probability of conversion of a chemosensitive cell to a
chemoresistant cell in each cell division) and « (the proportion of
cancer cells outside the peritoneum and unresectable) over a wide
range and computed the expected distribution of survival of pa-
tients by Monte Carlo simulation. We compared the deviation
between the Training Set data and the predictions of our model
for each combination of u and «, and from the region of best fit for
these parameters, we inferred that 10−9 < u < 10−7 and 10−9 < « <
10−5 (Fig. 2A). Finer investigation of the fit between data and

Significance

The optimal timing of surgery/chemotherapy and the benefits of
earlier diagnosis of HGSC remain controversial. We developed a
mathematical framework of tumor dynamics, populated the
model with primary clinical data, and reliably recapitulated clinical
observations. Our model predicts that 1) PDS is superior to NACT
with relatively small tumor burden and when complete debulking
is feasible, 2) timely adjuvant chemotherapy is critical for the
outcome of PDS with <1-mm residual tumors, 3) earlier detection
of relapse is unlikely beneficial with current therapies, and 4)
earlier detection of primary HGSC could have substantial benefit.
These results provide insights into the evolutionary dynamics of
HGSC, argue for new clinical trials to optimize therapy, and are
potentially applicable to other tumor types.

2 of 12 | PNAS Gu et al.
https://doi.org/10.1073/pnas.2026663118 Computational modeling of ovarian cancer dynamics suggests optimal strategies for

therapy and screening

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
23

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://doi.org/10.1073/pnas.2026663118


www.manaraa.com

theory in this parameter region showed that u = 10−7.6 and « =
10−7.4 is the best combination of these parameters, as it mini-
mizes the deviation between data and theory (Fig. 2B). Impor-
tantly, the trained value for u is consistent with chemoresistant
conversion rates estimated for multiple other cancers (37–40). The
trained value for « predicts that inaccessible cancer cells outside
the peritoneum are less numerous than cancer cells inside the
peritoneum after first-line therapy, which comports with clinical
observations that recurrent HGSC occurs predominantly inside the
abdominal cavity. Using the trained parameter values, we com-
pared the observed (Fig. 1B) and predicted (Fig. 2C) distributions
of patient survival in the Training Set. Reassuringly, the model
predictions closely recapitulated the clinical observations (Fig. 2 D
and E). Although this combination of u and « yielded the best
prediction using Training Set data, and big deviations from
these values led to worse predictions (SI Appendix, Fig. S2 A
and B), adjusting their values over a smaller range did not lead

to substantial decrease in prediction accuracy (SI Appendix, Fig.
S2C). Therefore, in our follow-up analyses, in addition to using the
base values of u = 10−7.6 and « = 10−7.4, we also tried alternative
combinations to test the robustness of our model predictions.
Using our mathematical framework and these estimated rates,

we then calculated the probability (as a function of tumor burden)
that chemoresistant cells are present at diagnosis (SI Appendix, Fig.
S3A). Consistent with clinical and theoretical studies of other
malignancies (37–39, 41–45), our model predicted that at least
some chemoresistant cells are always present at the start of therapy
for HGSC. We varied the values for each model parameter over a
large range to test their influence on the calculated number of
resistant cells at diagnosis: Within the ranges tested, this number
almost always exceeds 103 (SI Appendix, Fig. S3 B–G).

Model Validation. To assess the accuracy of our mathematical
framework and the validity of the estimated parameter values,

Table 1. Patient characteristics in UHN and CCTG cohorts

UHN cohort CCTG cohort

Total no. of patients 148 137
Time of diagnosis* 2008 Jan. (2005 Oct. to 2009 March) 2003 Nov. (2003 Jan. to 2004 Aug.)
Age* 58 (50–66) 58 (52–64)
Treatment regimen PDS 61 (41%) 137 (100%)

NACT 87 (59%) 0 (0%)
FIGO stage IIIC 124 (84%) 102 (74%)

IV 24 (16%) 35 (26%)
Residual disease <1 mm 97 (66%) 20 (15%)

1–10 mm 51 (34%) 34 (25%)
>10 mm 0 (0%) 83 (60%)

CA125 before treatment* 686 (220–1,680) Unknown
Overall survival* 41 (22: not reached) 40 (26: not reached)

*Values indicate median (range of first and third quartiles).

A

B

C

D

E

Fig. 1. Mathematical framework of HGSC clinical course. (A) Representative CA125 levels during clinical course of a typical HGSC patient. Chemotherapy
responsiveness decreases along the treatment course, indicating the accumulation of chemoresistant cells. (B–D) Kaplan–Meier survival curves for patients in
the UHN dataset. B compares the survival of patients with <1-mm residual tumor after treatment by PDS or NACT. Note that patients with PDS <1 mm lived
significantly longer than those with NACT <1 mm (P < 0.0001). C compares the survival of patients treated by PDS with <1-mm vs. 1- to 10-mm residual tumor.
Note that patients with PDS <1 mm lived significantly longer than those with PDS 1–10 mm (P < 0.0001). D compares the survival of patients treated by NACT
with <1-mm vs. 1- to 10-mm residual tumor. Note that survival of these two groups was not significantly different (P = 0.46). (E) Mathematical framework for
modeling HGSC progression. The model assumes the existence of chemosensitive and chemoresistant HGSC cells. During random growth, chemosensitive cells
divide at rate r, die at rate d, and convert into chemoresistant cells with probability u per cell division; chemoresistant cells divide at rate a and die at rate b.
During chemotherapy, chemosensitive cells divide at rate r′, die at rate d′, and convert into chemoresistant cells with probability u′ per cell division; che-
moresistant cells divide at rate a′ and die at rate b′. See text and SI Appendix, Methods for details.
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we analyzed the model-predicted distribution of overall survival
using data from several test sets (Fig. 3). First, we predicted the
survival of patients in Validation Set 1 (Fig. 3 A and B), by adjusting
the value of M (the number of cancer cells left in the peritoneum
after surgery), which can be approximated from the operative notes
(categorized as “<1 mm,” “1–10 mm,” or “>10 mm”). Comparison
of the observed (Fig. 3A) and predicted (Fig. 3B) distributions of
patient survival revealed no significant differences (Fig. 3 C and D).
The data for the above validation exercise were derived from

different patients than those used for the Training Set, but both
cohorts were treated over the same time period at the same in-
stitution (UHN). To more rigorously test the validity of our model,
we analyzed independent patient data, derived from the CCTG
cohort. As noted above, the treatment course of these patients also
differed somewhat from that of the UHN patients, enabling an
even better test of the general applicability of our framework. We
incorporated these differences into the model and predicted the
survival of patients in the CCTG trial. Again, the model predictions
fit very well with clinical observations, and recapitulated the theme
that PDS with minimal residual tumor results in the best outcome
(Fig. 3 E–I).

Predicted Outcome of PDS and NACT in Patients with Identical Tumor
Burden. Confident in the predictive power of our mathematical
framework, we modeled the expected clinical outcome of PDS and
NACT in patients with the same initial tumor burden by imposing
the same distribution of M1 on both groups. Our model predicts
that PDS patients should survive longer than NACT patients when
controlled for residual postsurgery tumor mass. As residual tumor
increases, however, the predicted survival advantage of PDS shrinks
(Fig. 4 A and B). To investigate the underlying reason(s) for these

predictions, we explored the predicted dynamics of chemosensitive
(blue) and chemoresistant (green) HGSC cells in patients un-
dergoing treatment by PDS or NACT (Fig. 4 C andD). Our model
predicts that, at diagnosis, a typical HGSC patient has low num-
bers of chemoresistant cells. In women who undergo PDS,
debulking surgery (S in Fig. 4C) dramatically reduces the number
of chemosensitive and chemoresistant cancer cells, because these
cells appear identical to the surgeon and therefore have an equal
likelihood of removal. Depending on the (stochastic) distribution
of chemoresistant cells within the abdominal cavity of the HGSC
patient, all chemoresistant cells present at diagnosis might have
been eliminated by complete debulking, with the residual che-
moresistant cell number following a Poisson distribution. Follow-
up chemotherapy (C in Fig. 4C) can then reduce the remaining
chemosensitive cells to very low numbers or even eradicate them.
By contrast, with NACT, neo-adjuvant chemotherapy (C) dra-

matically enriches for chemoresistant cells while killing the sensitive
cells; consequently, chemoresistant cells comprise a large propor-
tion of total tumor cells at surgery (S). Because chemosensitive cells
are largely depleted by the neoadjuvant chemotherapy, the amount
of residual tumor visible to the surgeon is reduced substantially.
Consequently, it is virtually impossible for interval debulking sur-
gery to fully deplete the chemoresistant cells (Fig. 4D). We propose
that this relative inability of NACT to deplete chemoresistant cells
explains the difference in outcome from patients treated with PDS.
Importantly, this conclusion is based on intrinsic properties of the
dynamics of cancer proliferation, survival, and death.
We then explored why the predicted superiority of PDS over

NACT depends on residual tumor burden postsurgery. By examining
the expected distribution of chemosensitive and chemoresistant cell
numbers after first-line therapy, we found that PDS with <1-mm

A

B

C D

E

Fig. 2. Estimation of parameter values and evaluation of model predictions. (A and B) Estimation of conversion rate (u) and inaccessible proportion («) in patients
treated by PDS or NACT with <1-mm residual tumor, using data from the UHN cohort (Training Set). Colors represent the degree of deviation between clinical data
and the predictions of the mathematical model. Lighter colors represent region of best fit between theory and observation. B provides a finer-scale analysis of the
red dashed region in A. (C) Model prediction of survival of patients treated by PDS or NACT with <1-mm residual tumor. Parameter values are as follows: u = 10−7.6,
« = 10−7.4, d = r/10, b = a/10, a′ = a, b′ = a/5, u′ = 10u. Values for r, a, r′, and d′were obtained from normal distributions. rwas set withmean of 2 and SD of 0.8. awas
set with mean of 0.84 and SD of 0.42. r′was set with mean of 0.2 and SD of 0.08. d′was set with mean of 4.9 and SD of 1.M1,M2, andMwere obtained from normal
distributions in the log-10 scale. Log10M1 was set with mean of 11.5 and SD of 0.4 for PDS group and mean of 12 and SD of 0.4 for NACT group. Log10M2 was set
with mean of 13 and SD of 0.4. Log10M was set with mean of 6 and SD of 0.4 for <1-mm residual cancer. (D and E) Comparisons of predicted and observed overall
survival for PDS <1-mm (D) and NACT <1-mm (E) groups. There was no significant difference between the prediction and clinical data for D (P = 0.20) or E (P = 0.69).
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residual tumor potentially can deplete all cancer cells in a significant
proportion of HGSC patients (Fig. 4E). This finding can account for
the considerable survival difference between PDS and NACT with
<1-mm residual tumor. By contrast, with >1-mm residual tumor,
neither PDS nor NACT depletes all malignant cells, even though
fewer tumor cells are predicted to remain after PDS (Fig. 4F).
Consequently, almost all patients with >1-mm residual tumor are
predicted to relapse and eventually die because of the inability of
current agents to kill chemoresistant cells. This analysis explains why
PDS can be superior to NACT when complete debulking is achieved
and why residual tumor mass is a key determinant of survival after
PDS but not NACT (Fig. 3 A and B). Our predictions regarding
PDS vs. NACT are illustrated in Fig. 4G.

Test the Robustness and Generalizability of Model Prediction. To test
the robustness of our predictions and quantitatively examine the
influence of each factor on survival, we varied each parameter in
our model over a large range. We identified multiple factors that
influence the magnitude of the predicted difference between PDS
and NACT (SI Appendix, Fig. S4). For example, faster growth of
cancer cells does not necessarily imply worse survival. Specifically,
although elevated growth rate of chemoresistant cells in the ab-
sence of chemotherapy leads to worse survival, faster-growing,
chemosensitive cells can sometimes result in better survival (SI
Appendix, Fig. S4 A–D). This result can be attributed to a lower
percentage of chemoresistant cells at diagnosis when chemo-
sensitive cells proliferate faster. However, if the proliferation rate

of chemosensitive cells is too high (e.g., when r = 3), new che-
moresistant cells might be generated between the time of surgery
and adjuvant chemotherapy, resulting in worse survival (SI Ap-
pendix, Fig. S4A). We also inferred that the relative importance of
chemosensitive and chemoresistant cells in influencing survival
might differ at different stages along the clinical course. During
treatment-free periods, the growth rate of chemoresistant cells
could play a more dominant role in influencing patient survival (SI
Appendix, Fig. S4 A–D), because they underlie ultimate treatment
failure. However, during periods of chemotherapy, the growth rate
(or depletion rate) of chemosensitive cells might play a more
dominant role (SI Appendix, Fig. S4 E–H), because the depletion
rate of chemosensitive cells at this stage determines whether they
can be completely eradicated by chemotherapy. By contrast,
chemoresistant cells likely will endure. As a result, drug choice and
dose, which likely influences the efficiency of elimination of che-
mosensitive cells, is predicted to be a critical factor in treatment
outcome. Some molecular subgroups of HGSC (e.g., CCNE1-
amplified tumors) are highly resistant to current chemotherapy.
Our model predicts that these patients would be refractory to
PDS, even if complete debulking is achieved (SI Appendix, Fig.
S4 E and F, when r′ is high or d′ is low). Residual cancer cell
abundance after tumor resection can dramatically influence pa-
tient survival, especially in the PDS group (SI Appendix, Fig. S4I),
suggesting that primary cytoreductive surgery should aim for
complete removal of cancer cells even though chemotherapy will
usually follow. Tumor size at diagnosis can be a critical factor

A B C D

E F G H

I

Fig. 3. Evaluation of model predictions with data from validation sets. (A and B) Observed (A) and predicted (B) overall survival of patients from the UHN
dataset treated with PDS or NACT with 1- to 10-mm residual tumor. (C and D) Comparison of predicted and observed survival for the PDS (C) and NACT (D) 1-
to 10-mm residual tumor groups. There was no significant difference between the predictions and clinical data for either (C) (P = 0.59) or (D) (P = 0.21). (E and
F) Observed (E) and predicted (F) overall survival of patients in the CCTG cohort. Patients received PDS and had <1-mm, 1- to 10-mm, or >10-mm residual
tumor. (G–I) Predicted and observed survival of PDS-treated patients from the CCTG study with <1-mm (G), 1- to 10-mm (H), or >10-mm (I) residual tumor.
There was no significant difference between predictions and clinical data for G (P = 0.73), H (P = 0.40), or I (P = 0.42). Parameter values were the same as in
Fig. 2C, except that log10M was set with mean of 8 and SD of 0.4 for the 1- to 10-mm residual group, and mean of 10 and SD of 0.4 for the >10-mm residual
groups. Also, the gap between surgery and the start of chemotherapy was 1 mo for the UHN patients and 0.8 mo for the CCTG patients; UHN patients
received six cycles of chemotherapy for first-line PDS treatment, whereas CCTG patients received eight cycles.
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determining whether a patient can be cured (SI Appendix, Fig.
S4J) and is addressed below. By contrast, varying the parameter
value of tumor size at patient death did not influence the length of
survival (SI Appendix, Fig. S4K).
To further test the general applicability of our model, we

asked whether it could explain the similar outcome of patients
treated with PDS and NACT in prospective clinical studies, such
as the CHORUS trial (28), using their patient data. Overall, pa-
tients in this study had substantially shorter survival than cohorts
in most other studies. We reasoned that this might be attributable
to more severe disease at diagnosis in patients in this cohort, such
as higher tumor burden and/or more severe systemic metastasis.
We therefore retrained the parameters M1 and « for patients in
the CHORUS study, only using the data from PDS or NACT 1- to
10-mm groups in this cohort. Indeed, the model predicted higher
values for both parameters (median ofM1 = 1012.2 and « = 10−2.9)
(SI Appendix, Fig. S5A). When we then use these parameter values
to predict the survival of PDS and NACT <1-mm groups, the
model predicted no significant difference between the two regi-
mens, consistent with the trend published in the original study (28)
(SI Appendix, Fig. S5B). These results indicate that the contra-
diction between existing retrospective studies and prospective
trials might have derived from differences in disease severity at
diagnosis of patients in each cohort. This analysis further supports
the conclusion that disease burden information is a critical factor
in choosing PDS or NACT. Importantly, our prediction is cor-
roborated by a recent pooled analysis of the CHORUS and
EORTC trials, which showed that PDS tends to outperform
NACT in patients with stage IIIC but not stage IV disease (46).
We also considered two alternative scenarios: 1) that hetero-

geneous populations of (variably) chemoresistant cells exist in

the same patient (SI Appendix, Fig. S6 A–C), or 2) that HGSC
initiates from an intrinsically chemoresistant “cancer stem cell,”
which differentiates into chemosensitive “tumor progenitor
cells” (SI Appendix, Fig. S6 D–F). Either of these assumptions
results in the same conclusions as the original model.

Modeling Alternative Treatment Regimens.We next utilized our model
to predict the effects of altering current treatment regimens on pa-
tient outcomes. For both PDS and NACT, adjuvant chemotherapy
typically begins 4–5 wk postsurgery, an interval chosen to allow pa-
tients to recover from their typically aggressive surgical treatment.
The length of the postsurgical chemotherapy delay varies between
centers and among physicians, but its influence on treatment out-
come has not been studied carefully. We varied the length of
treatment delay in our model and tested the predicted effects on
patient survival. For PDS with <1-mm residual tumor, earlier ini-
tiation of chemotherapy might prolong survival, whereas longer
treatment delay might worsen outcome (Fig. 5A, P < 0.0001). For
PDS with >1-mm residual tumor or for NACT with any amount of
residual tumor, treatment delay (within the same range) is pre-
dicted to have little effect on outcome (Fig. 5 B–D). These dif-
ferences arise primarily because upfront surgery that results in <1-
mm residual tumor, followed by chemotherapy, potentially can
deplete all tumor cells when treatment delay is minimized
(Fig. 5E). The probability of depletion decreases with longer de-
lay, largely because chemoresistant cells can arise during the gap
between upfront surgery and adjuvant chemotherapy (Fig. 5E).
By contrast, PDS with >1-mm residual tumor or NACT is un-
likely to deplete all cancer cells (SI Appendix, Fig. S7 A–C),
irrespective of treatment delay. Our predictions on the critical

A B C D

E

F

G

Fig. 4. Predicted outcome of PDS and NACT patients with same initial tumor burden. (A and B) Predicted survival of patients undergoing PDS (black curves)
or NACT (red curves). All patients received six cycles of chemotherapy. A shows the results for <1-mm residual tumor group, and B shows the result for 1- to
10-mm residual tumor group. Parameter values were as in Fig. 2C, except that log10M1 was set at the same value for the PDS and NACT groups, with mean of
11.5 and SD of 0.4. (C and D) Simulation of representative progression dynamics for chemosensitive (green curves) and chemoresistant (blue curves) cancer
cells in a patient undergoing PDS (C) or NACT (D) treatment with optimal debulking. Treatment order is shown at the top of each plot; “S” indicates
“surgery,” and “C” indicates “chemotherapy.” (E and F) Distribution of number of chemosensitive and chemoresistant cells for the PDS (black curves) and
NACT (red curves) groups, with <1-mm (E) or 1- to 10-mm (F) residual tumor. (G) Scheme illustrating HGSC clinical course following PDS or NACT treatment.
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nature of the interval between optimal debulking surgery and
adjuvant chemotherapy are schematized in Fig. 5F.
Our model predicts that neoadjuvant chemotherapy enriches

for chemoresistant cells and thus increases the percentage of
chemoresistant tumor cells remaining postsurgery in patients
treated with NACT. Conceivably, reducing the number of cycles of
neoadjuvant chemotherapy might attenuate the enrichment for
chemoresistant cells, and if the same number of residual cancer
cells remain after surgery, less neoadjuvant chemotherapy might
prolong survival. Indeed, our model predicts that patients under-
going NACT with <1-mm or >1-mm residual tumor could benefit
slightly from reducing the number of presurgery chemotherapy
cycles (SI Appendix, Fig. S7 D and E). The small predicted im-
provement arises primarily because of more efficient reduction of
the number of chemoresistant cells at surgery. The benefit is lim-
ited, however, because for most patients, chemoresistant cells are
still unlikely to be eradicated after their enrichment during the
neoadjuvant chemotherapy period (SI Appendix, Fig. S7 F and G).

Predicted Effects of Earlier Diagnosis on Survival. We also utilized
our model to evaluate the potential benefits of earlier diagnosis.
We first modeled the effects of diagnosing relapsed HGSC at the
earliest possible time enabled by the currently used clinical test,
CA125 detection (47). Contrary to the intuitive notion that earlier
diagnosis of recurrence should be advantageous, we find that CA125-
based earlier diagnosis is not expected to improve survival (Fig. 6 A
and B, red curves). We also asked whether detecting recurrence
earlier than is possible with CA125 monitoring would be advanta-
geous. However, even with a sensitivity ∼104 greater than that re-
quired for physical symptoms to appear (lead time, >5 mo), the
current upper limit of sensitivity for ctDNA-based diagnosis of ovarian
cancer (33), our model predicts no advantage in patient survival if
recurrence is detected earlier (Fig. 6 A and B, green curves).
We explored the reason for this lack of survival advantage by

modeling the theoretical numbers of chemosensitive and chemo-
resistant cells in a virtual patient whose recurrence is diagnosed
with increasing levels of sensitivity (Fig. 6C). Although earlier
diagnosis, followed by prompt reinstitution of chemotherapy, can
better deplete chemosensitive cells, it barely affects the chemo-
resistant cells that have been enriched by first-line therapy, which
ultimately expand and cause patient death. Therefore, earlier

diagnosis is unlikely to improve survival when applied to relapsed
cancers treated with standard cytotoxic chemotherapy regimens.
Based on this result, we asked whether treating relapsed tumors
using a hypothetical drug with similar efficacy but a distinct re-
sistance mechanism from platinum/paclitaxel would potentiate the
benefit of earlier diagnosis of relapsed HGSC. Indeed, our model
predicts that earlier diagnosis of relapsed cancer can be beneficial,
but only with alternative second-line therapy (Fig. 6 D and E). The
magnitude of the advantage of earlier diagnosis of relapse pri-
marily depends on the probability that earlier, but not later, in-
tervention at relapse can be curative. Our predictions on the
impact of earlier detection of relapsed tumor are illustrated in
Fig. 6F.
Finally, we used our model to explore the potential benefit of

earlier detection of treatment-naive tumors. As HGSC deposits
usually get larger and/or more disseminated if left untreated,
earlier upfront diagnosis would likely identify smaller, probably
less disseminated, tumors, potentially increasing the chances of
complete debulking. We therefore focused our comparison on
the predicted effects in patients with <1-mm residual tumor. Our
analysis argues that earlier diagnosis of treatment-naive cancer,
with concomitant prompt intervention, can improve patient
survival compared to regular diagnosis when controlled for re-
sidual cancer cell number postsurgery (SI Appendix, Fig. S8). For
PDS with complete debulking, the predicted survival benefit can
be dramatic, primarily because lower volume and less diffuse
tumor at presentation can increase the likelihood of disease
eradication (SI Appendix, Fig. S8 A, C, and E). By contrast, for
NACT with complete debulking, the predicted benefit is rather
limited, and the difference is detectable only if lead time is
sufficient (SI Appendix, Fig. S8 B, D, and F). In that case, che-
moresistant cells might not yet have arisen, and chemotherapy
alone might be sufficient to eradicate disease.

Discussion
Mathematical modeling has demonstrated potential in the sys-
tematic and quantitative assessment of various treatments (44, 48,
49). If the outcomes of different strategies could be modeled ac-
curately a priori, clinical trials could focus on therapeutic combi-
nations that are most likely to succeed, and improvements in
patient outcomes could be accelerated. The potential benefits of

A B C D

E F

Fig. 5. Predicted outcomes of alternative treatment strategies. (A–D) Predicted survival of patients receiving PDS (A and B) or NACT (C and D) with different
lengths of delay between debulking surgery and adjuvant chemotherapy. A and C show expected results with <1-mm residual tumor after surgery; B and D
show predicted results with 1- to 10-mm residual tumor. (E) Distributions of the numbers of chemosensitive or chemoresistant cells after PDS (<1-mm residual
tumor) with different intervals (colored lines) between debulking surgery and adjuvant chemotherapy. (F) Scheme showing predicted HGSC clinical course
following PDS (<1-mm residual tumor) with standard or delayed adjuvant chemotherapy.

Gu et al. PNAS | 7 of 12
Computational modeling of ovarian cancer dynamics suggests optimal strategies for
therapy and screening

https://doi.org/10.1073/pnas.2026663118

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
23

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026663118/-/DCSupplemental
https://doi.org/10.1073/pnas.2026663118


www.manaraa.com

modeling are particularly important for diseases with relatively
limited patient populations, in which it is not possible to do
multiple clinical trials in parallel. Predictive models also can sug-
gest when specific clinical controversies merit reexamination in the
controlled trial setting. Our mathematical model of HGSC defines
factors that affect the evolution of chemotherapy resistance and
can predict patient survival based on the growth dynamics of che-
mosensitive and chemoresistant cells, whether stochastic or hierar-
chical models of tumor initiation are assumed. Our results have
important implications for HGSC therapy and screening.
We populated our model with clinical data from ∼300 patients

receiving PDS or NACT. After estimating the rates of tumor cell
proliferation and conversion to chemoresistance, we concluded that

most HGSC patients probably harbor chemoresistant cancer cells at
diagnosis. Our outcome predictions closely match patient data from
multiple sources and support clinical observations that 1) PDS that
leaves minimal residual tumor is the optimal treatment strategy for
patients who can tolerate the surgery and who do not have over-
whelming or inaccessible disease burden at presentation; 2) residual
tumor size is a critical determinant of survival in patients undergoing
PDS, but not NACT; 3) earlier diagnosis of relapsed cancer does
not—and cannot—lead to better survival with current therapies; and
4) earlier diagnosis of primary (treatment-naive) HGSC could dra-
matically improve outcomes from this devastating disease, if PDS
with complete debulking is feasible.
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Fig. 6. Predicted effects of earlier diagnosis and treatment of relapsed cancer. (A and B) Predicted survival of patients with relapsed cancer detected at
different degrees of sensitivity. Predictions were stratified based on the first-line therapy performed, including (A) PDS or (B) NACT with <1-mm residual
tumor. “Standard” (black curves) represents diagnosis based on physical symptoms, when the number of cancer cells is comparable to M1; “100× sensitivity”
(red curves) and “10,000× sensitivity” (green curves) represent earlier treatment of recurrent disease with the number of cancer cells at diagnosis 1% or 0.01%
that ofM1, respectively. (C) Simulation of representative growth dynamics for chemosensitive (green curves) and chemoresistant (blue curves) cancer cells in a
patient treated by PDS with optimal debulking, with relapsed cancer diagnosed at different degrees of sensitivity. Earlier treatment of relapsed cancer can
more effectively deplete chemosensitive cells but does not effectively change the trajectory of chemoresistant cells, which are the ultimate cause of patient
death. Parameter values are the same as in Fig. 2C. (D and E) Predicted survival of patients with relapsed cancer detected at different degrees of sensitivity
and treated with a different second-line chemotherapy. Predictions were stratified based on the first-line therapy performed, including (D) PDS or (E) NACT
with <1-mm residual tumor. “Standard” (black curves) represents diagnosis based on physical symptoms, when the number of cancer cells is comparable to
M1; “100× sensitivity” (red curves) and “10,000× sensitivity” (green curves) represent earlier treatment of recurrent disease with the number of cancer cells at
diagnosis 1% or 0.01% that of M1, respectively. (F) Scheme showing predicted clinical course of relapsed HGSC, with standard or earlier diagnosis at relapse.
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Our model shows clearly that, for HGSC patients whose tumor
burden at diagnosis is not too severe, PDS with complete debulking
should lead to a better outcome than NACT with complete
debulking. We infer that the reason for the superior predicted
outcome of PDS is that upfront surgery can deplete minority che-
moresistant cells more effectively, leaving adjuvant chemotherapy to
eradicate residual chemosensitive cells. If debulking surgery
removes all chemoresistant cells, the PDS regimen can be curative.
By contrast, cure is unlikely after NACT for at least two reasons.
First, neoadjuvant chemotherapy enriches for, and allows the con-
tinued expansion of, chemoresistant cells. Second, by depleting bulk
chemosensitive cells, chemotherapy removes tumor mass that can
mark the location of chemoresistant cells interspersed in metastatic
deposits. We suggest that removing these “sentinel” chemosensitive
cells renders interval surgery less effective than upfront surgery in
depleting chemoresistant cells, which are the cells that eventually
cause death. At present, the most feasible way to achieve this goal is
by surgically removing such cells, which is much more likely with the
PDS regime. Of course, the development of drugs that can target
these resistant cells should alter these conclusions (17, 22, 50).
Previous clinical studies differed over whether PDS or NACT

is superior. A retrospective analysis of patients treated between
1980 and 1997 found no difference in outcome between PDS and
NACT (26). By contrast, several meta-analyses indicated that
NACT is associated with worse prognosis (21, 51). This contro-
versy occasioned two large, controlled clinical trials to compare
PDS and NACT (23, 28), which found no significant difference
in patient survival between PDS and NACT. A major reason for
these contradictions can be attributed to differences in study
design and patient selection. Our model shows how these con-
tradictions can be reconciled. For the retrospective studies,
where patients underwent less preselection and thus are more
likely to represent the bulk population, our model predicts that
PDS should be superior to NACT with complete debulking. In
the prospective studies, only patients with “extensive” HGSC
were recruited, which might explain the notably worse outcome
of patients in this study, especially in PDS <1-mm group, com-
pared with multiple other reports (19, 20, 24, 52). Our compu-
tational model predicts that elevated upfront tumor burden
should lead to worse overall survival and obscure the difference
in outcome between PDS and NACT, even when complete
debulking is performed (SI Appendix, Figs. S4J and S5). In par-
ticular, differences in the magnitude of «, the “inaccessible
proportion,” alone might contribute to the lack of difference
between PDS and NACT in these trials. This prediction is cor-
roborated by a recent pooled analysis of the EORTC and
CHORUS trials (46). Our results also imply that knowing the
feasibility of complete debulking before surgery could assist in
choosing PDS vs. NACT for treatment. Indeed, several studies
reported that laparoscopy can be used for this purpose (53–55).
An earlier mathematical modeling study, based on a Gom-

pertzian growth model, argued that NACT should be superior to
PDS (56). However, that study did not account for the different
dynamics of chemosensitive and chemoresistant cells and as-
sumed equal efficiency of surgical depletion of large and small
tumors, which ignores the intrinsic limitations of surgery. Such
assumptions can lead to serious errors in modeling HGSC. For
example, although aggressive surgery might reduce a tumor
containing >1011 cells to a mass of <107 cells, a tumor contain-
ing <106 cells is unlikely to be visible during surgery, making it highly
unlikely that such a tumor can be surgically reduced to <102 cells.
A study of the optimal order of surgery and chemotherapy in

pancreatic cancer concluded that neoadjuvant chemotherapy should
be superior to upfront surgery (36). However, the biology and che-
moresponsiveness of pancreatic cancer and HGSC differ substan-
tially: Whereas HGSC is usually quite chemoresponsive, pancreatic
cancer is notoriously chemoresistant. The differential influence on
tumor visibility following chemotherapy likely underlies the different

predictions in the two diseases. Nevertheless, the difference between
our conclusions and those of Haeno et al. (36) argue for caution in
extrapolating their conclusions to other types of cancer.
Some treatment considerations are beyond the scope of

computational modeling. For example, in many patients (e.g.,
the infirm), NACT is preferred simply because of the potential
risks of this large operation, which include bowel perforation,
uncontrolled bleeding, and/or the stresses of prolonged surgery/
anesthesia. In such scenarios, treatment choice depends pri-
marily on technical feasibility. Another limitation of our model is
that we do not simulate potential effects of the tumor micro-
environment (TME), including infiltrating immune cells. Recent
studies from our group and by others suggest that the immune
microenvironment of HGSC, shaped by tumor-initiating muta-
tions, has a major influence on HGSC biology (57, 58). The
paucity of data on immune landscape characterization in clinical
samples and our limited understanding of the tumor-infiltrating
immune cells at present preclude accurate simulation of such
effects. With the increasing availability of clinical data and better
mechanistic understanding of cancer-immune interaction, TME
effects could be integrated into our model in the future.
Our model also enables quantitative analysis of the depen-

dence of treatment outcome on various factors under different
scenarios, providing a powerful tool to assist clinical decision-
making. For example, we found that the advantage of PDS over
NACT diminishes with larger residual tumor postsurgery, more
extensive metastases at unresectable locations, and/or a higher
percentage of chemoresistant cells at diagnosis (Fig. 3 A and B
and SI Appendix, Fig. S4 A–C). These features might help explain
the similar overall survival between PDS and NACT groups in
studies involving patients with more extensive upfront disease or
less complete surgical removal (23, 26). Our analysis argues that
for PDS patients with <1-mm residual tumor, adjuvant chemo-
therapy should start as early as possible to provide the best
chance of curative outcome; indeed, we predict that differences
of even a few weeks might dramatically alter the chance for curative
outcome. Conversely, if complete debulking is not achieved at pri-
mary surgery, delaying chemotherapy is less likely to affect survival.
These predictions are consistent with the results of a meta-analysis of
clinical studies (59), which found that each extra week of delay was
associated with a significantly decreased overall survival in patients
with PDS <1-mm residual tumor, but not in patients with visible
residual disease. We also predict that reducing the number of cycles
of neoadjuvant chemotherapy might result in slightly improved
overall survival for NACT patients, a prediction that is consistent
with a meta-analysis (51) and a very recent clinical study (60). Recent
work suggests that NACT alters the immune cells in the tumor to a
more antitumor state and might prime the tumor to respond better
to immunotherapy (61). Therefore, we speculate that fewer cycles of
neoadjuvant chemo might enrich for chemoresistant cells to a more
limited extent, while also activating the immune response.
A final prediction of our model is that earlier diagnosis should

have quite different impact on relapsed vs. treatment-naive pa-
tients. For the former, earlier diagnosis is unlikely to improve
overall survival, primarily because earlier treatment of recurrent
tumors with existing agents cannot deplete chemoresistant cells
that have been enriched over the clinical course. This prediction
matches very well with earlier clinical observations (31). Two
scenarios might alter this conclusion: 1) if effective chemotherapy
with a resistance profile orthogonal to platinum/taxane-based ther-
apy were to become available at relapse; or 2) if effective debulking
could be achieved at relapse. Effective drugs against HGSC remain a
major clinical limitation (62, 63). PARP inhibitors, which are used as
maintenance therapy following platinum-taxane therapy and espe-
cially effective in patients with homologous recombination deficiency
(64), could serve as such alternative agents for relapsed cancer. If
they have different resistance mechanisms from first-line therapy,
our findings suggest employing such alternative agents as early as
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possible upon tumor relapse. Furthermore, the use of such alter-
native agents at relapse can be beneficial compared with reusing the
first-line drugs, even in the absence of earlier diagnosis (Fig. 6E vs.
Fig. 6B). Similar proposals on combining drugs with orthogonal re-
sistance profiles have been raised by others (37, 65). Surgery is not
typically performed on recurrent HGSC, and its efficacy could be
limited by the proportion of cancer cells at unresectable locations
at disease relapse. Nevertheless, our model calls for reevaluation
of feasibility and potential efficacy of secondary surgery for the
benefit of earlier diagnosis. Consistent with our analysis, retro-
spective studies (66, 67) and a recent prospective trial (68) indicate
that secondary surgery achieving complete debulking can be
beneficial for HGSC patients with platinum-sensitive tumors.
By contrast, our model predicts that earlier diagnosis of

treatment-naive cancer could improve overall survival for at least
two reasons: 1) Chemoresistant cells are usually not enriched
prior to treatment and earlier intervention can reduce the like-
lihood that significant numbers of these cells will arise; and 2)
earlier upfront surgery has a better chance of removing all che-
moresistant cells, assuming that tumor cells have not diffused
throughout the peritoneal cavity or seeded unresectable loca-
tions. This trend is consistent with a recent clinical trial testing
the benefit of earlier upfront diagnosis of HGSC. Although
screening did not identify ovarian cancer at an earlier stage, women
who were screened annually for serum CA125 levels had reduced
mortality from ovarian cancer than those with no screening (69). In
that study, the survival improvement by CA125-based screening
was significant but modest, and might be attributable to at least two
factors: 1) the lead time of CA125-based screening is on average
less than 1 y (70, 71), which is shorter than the screening interval;
2) early-diagnosed patients may receive either PDS or NACT, and
our model predicts that particularly in this setting, NACT might
counteract the benefit of earlier diagnosis. Two additional potential
advantages of earlier diagnosis and treatment of naive HGSC are
not explicitly considered in this analysis: 1) Earlier diagnosis might
increase the likelihood of complete debulking; and 2) patients
considered treatable only by NACT with regular diagnosis might be
eligible for PDS with earlier diagnosis.
In summary, our analyses suggest that future randomized clin-

ical trials might consider 1) the influence of the interval between
primary debulking surgery and adjuvant chemotherapy on treat-
ment outcome, particularly for those with <1-mm residual disease,
2) the association between the number of neoadjuvant chemo-
therapy cycles and treatment outcome, 3) the effects of alternative
chemotherapy and/or complete secondary surgery on relapsed tu-
mor, especially when coupled to earlier diagnosis, and 4) better
ways to estimate tumor mass at presentation, and thereby refine the
prediction of which patients are most likely to benefit from PDS.
Our results also argue that whereas not all patients who can achieve
complete cytoreduction will benefit from PDS over NACT (give the
importance of, and difficulty in measuring, «), a subset of patients
exist whose only chance of long-term survival or cure is the former
regime. Finally, the mathematical abstraction makes our framework
potentially applicable to evaluating different treatment strategies in
other malignancies.

Materials and Methods
Patient Information. Clinical data from 285 HGSC patients were obtained from
patient records at UHN (148 patients) and from the CCTG OV16 NCT00028743
trial (137 patients). Medical record information, including date of diagnosis,
age of patient, timing of treatment, extent of residual disease in diameter
(<1, 1–10, or >10 mm), CA125 levels along the treatment course, and survival
data (updated in 2014 for UHN data and 2010 for CCTG data) were recorded.
Institutional research ethics board approval was obtained through UHN and
a Data Sharing Agreement was concluded with CCTG.

Variables Used in Mathematical Model.Wedenote the following variables for the
development of mathematical modeling: r, division rate of chemosensitive cells

in the absence of chemotherapy; d, death rate of chemosensitive cells in the
absence of chemotherapy; a, division rate of chemoresistant cells in the absence
of chemotherapy; b, death rate of chemoresistant cells in the absence of che-
motherapy; r′, division rate of chemosensitive cells in the presence of chemo-
therapy; d′, death rate of chemosensitive cells in the presence of chemotherapy;
a′, division rate of chemoresistant cells in the presence of chemotherapy; b′,
death rate of chemoresistant cells in the presence of chemotherapy; M, the
number of residual cancer cells in the peritoneal cavity after surgery; M1, the
total number of cancer cells at diagnosis;M2, the total number of cancer cells at
death; u, the probability of conversion of a chemosensitive cell to a chemo-
resistant cell in each cell division; «, the proportion of cancer cells outside the
peritoneum and unresectable.

Estimation of Parameter Values. Unless otherwise specified, clinically relevant
parameter values were estimated and set as follows.

In the absence of chemotherapy, the proliferation rate of chemosensitive cells
(r) was obtained from the normal distribution with mean of 2 and SD of 0.8,
based on a clinical study interrogating the doubling time of ovarian cancer cells
by BrdU labeling (72). Another study compared cancer cell proliferation rates in
platinum responders and nonresponders by thymidine labeling and found that
responders had significantly higher labeling index than patients with stable or
progressive disease (73). This analysis is consistent with several other studies that
also found chemosensitive cells with proliferation advantage in the absence of
therapy (74, 75). Accordingly, we set the proliferation rate of chemoresistant
cells (a) to a normal distribution with mean of 0.84 and SD of 0.42. Death rates
(d and b) were set as 10% of proliferation rates (r and a), respectively, which is
within physiologically relevant range; in any case, varying this ratio over a large
range does not affect the main conclusions of this paper.

During chemotherapy, the proliferation rate of chemosensitive cells (r′) was set
to 10% of that of randomly growing cells (r); the death rate of chemosensitive
cells (d′) was set to a normal distribution with mean of 4.9 and SD of 1. These
values were set to match the clinical observation that chemoresponsive relapse
occurs on average ∼11 mo after six cycles of chemotherapy, indicating that cy-
totoxic reduction of chemosensitive cells by six cycles of chemotherapy corre-
sponds to ∼11 mo of proliferation. Our inference is consistent with published
efficacy of chemotherapy in HGSC (25, 76). The proliferation rate of chemo-
resistant cells during chemotherapy (a′) was set to the same as that during
random growth (a); the death rate of chemoresistant cells during chemotherapy
(b′) was set to twice as that during randomly growing (b), or 20% of a′, to reflect
a modest effect of chemotherapy on chemoresistant cells. Conversion rate dur-
ing chemotherapy (u′) was set as 10 times of that during randomly growing (u),
to reflect the DNA-damaging effect of platinum-based chemotherapy.

The parameters reflecting cancer cell numbers (M, M1, M2) were obtained
from normal distributions in base 10 logarithmic scale. The number of residual
cancer cells immediately postsurgery (M) was set to mean of 6 and SD of 0.4 on
the log scale for <1-mm residual tumor, mean of 8 on the log scale for 1- to
10-mm residual cancer, and mean of 10 on the log scale for >10-mm residual
cancer. The number of cancer cells at diagnosis (M1) was initially set at dif-
ferent values in patients receiving PDS and NACT, to reflect the clinical ob-
servation that patients with NACT tend to have more extensive disease at
diagnosis (24). M1 for PDS was set at mean of 11.5 and SD of 0.4 on the log
scale, andM1 for NACT was set at mean of 12 and SD of 0.4; these values result
in NACT patients starting with >3× the cancer burden in the model than those
receiving PDS. Moreover, we varied the ratio of tumor burden at diagnosis in
NACT vs. PDS patients from 1 to 101.5, and the main conclusions hold over the
entire range. M2 was set to mean of 13 and SD of 0.4 on the log scale.

We varied the values for all of the above parameters to test the robustness
of our conclusions. We found that the main conclusions hold true, although
the magnitude of the differences between PDS and NACT treatment
outcomes may vary.

Mathematical Deduction of the Expected Number of Chemoresistant Cells at
Diagnosis. We deduced the expected the number of chemoresistant cells at
diagnosis based on previous studies (35, 36). We first calculated the proba-
bility that chemoresistant cells exist at diagnosis (Pd), and then calculated the
expected number of chemoresistant cells at diagnosis (Yd).

To calculate Pd, we summed the probabilities that the first successful lineage
of chemoresistant cells arises when there are 1, 2, 3, . . .M1-1 chemosensitive cells.
P(x) denotes the probability that the first lineage arises when there are x che-
mosensitive cells. P(x) can be expressed as the joint probability that no successful
chemoresistant lineage arises at 1, 2, 3, . . . x-1 chemosensitive cells, and that a
successful lineage arises at exactly x chemosensitive cells. An expected
1=(1 − d=r) divisions are needed for an effective increase of 1 chemosensitive
cell, and during these divisions an expected u=(1 − d=r) chemoresistant cells are
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generated, among which a proportion (1 − b=a) will successfully persist. As-
suming that the number of surviving chemoresistant cells generated by each
division follows a Poisson distribution with mean (1 − b=a)u=(1 − d=r) (45), we
derive P(x):

P(x) = e−(x−1)(1−b
a)u=(1−d

r)(1 − e−(1−b
a)u=(1−d

r)).
Thus, the probability that chemoresistant cells exist at diagnosis, Pd, can be
written as the sum of P(x):

Pd = ∑M1−1

x=1
e−(1−b

a)(x−1)u=(1−d
r)(1 − e−(1−b

a)u=(1−d
r)).

If we denote the time between the emergence of a successful chemoresistant
cell and diagnosis as τx, then the expected number of chemoresistant cells at
diagnosis in the patients who have them can be expressed as follows:

Yd = 1
Pd

∑M1−1

x=1
e−(1−b

a)(x−1)u=(1−d
r)(1 − e−(1−b

a)u=(1−d
r))e(a−b)τx .

The amount of time τx satisfies the following:

xe(r−d)τx + e(a−b)τx = M1.

Simulation of the Dynamics of Cancer Cell Number after Diagnosis. As the num-
bers of chemosensitive (denoted by X) and chemoresistant (denoted by Y) cells
at diagnosis are expected to be large, we approximated their dynamics after
diagnosis with a deterministic model, simulating the effects of random growth,
chemotherapy, and surgery (cancer cell numbers before and after surgery are
denoted as Xbefore, Ybefore, and Xafter, Yafter, respectively):

Random growth :
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
dX
dt

= (r(1 − u) − d)X
dY
dt

= ruX + (a − b)Y
,

Chemotherapy :
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
dX
dt

= (r’(1 − u’) − d’)X
dY
dt

= r’u’X + (a’ − b’)Y ,

Surgery :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Xafter = Xbefore

Xbefore + Ybefore
M + «Xbefore

Yafter = Ybefore

Xbefore + Ybefore
M + «Ybefore

.

Treatment is adjudged a “failure” if the number of cancer cells posttreat-
ment exceeds that pretreatment. In the case of treatment failure, our model
simulates random growth of cancer cells to the total number of M2, which
marks patient death.

Estimation of Conversion Rate u and Unresectable Proportion e. For each
combination of candidate values for u and «, we calculated the deviation of
model prediction from clinical observations as follows:

Dev =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i

(deathi−th year observed − deathi−th year predicted)2√
.

The combination that led to lowest deviation was used for model testing and
further predictions.

Statistical Analyses. Comparisons of overall survival between two groups were
performed by log-rank test. Comparisons of predicted survival between more
than three groups were performed by log-rank test for trend when the order
of groups is logical. Comparisons of distribution of overall survival between
model predictions and clinical observations were performed by χ2 test.

Data Availability. All study data are included in the article and/or supporting
information.
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